Linaro
-
Rethinking the core OS in
2015

Are alternatives to gcc, libstdc++
S——— and glibc viable yet?

Bernhard "Bero" Rosenkranzer

Date
Linux Plumbers Conference 2015

The traditional approach

Building a Linux system traditionally
P meant starting with building a core
- consisting of binutils, gcc and glibc
- (sometimes uClibc).

This is still a very viable approach,

' but now there are other options...
» ‘Llnaro

) BFD Id can be replaced with gold,
@ A also part of binutils).

lld and mclinker are making some

progress, but not quite there yet.
- ‘Llnaro

Binutils

gas is frequently needed because
™ clang’s integrated as doesn’t support
P legacy constructs in common use (e.

1

. 4 g. pre-unified syntax on ARM)

Linaro
r

Binutils

Tools like nm need to get more

g complex: They should now deal with
S 3 types of input:

regular object files
LLVM bytecode (clang -flto)
gcc interim code (gcc -flto)

Linaro
r

#!/bin/sh

REAL NM=binutils-nm

PARENT=""readlink /proc/$PPID/exe "

WRAPPED=false

If /proc isn't mounted, let's do the least evil thing we can

if [-z "SPARENT"]; then
WRAPPED=true
elif echo $PARENT |grep -gE -- '-nm$'; then

If we're being called by gcc-nm or llvm-nm, we're already
wrapped (and need to make sure we don't call ourselves recursively)
WRAPPED=true
elif echo SPARENT |grep -gE -- 'gemu'; then
Fun... We're running inside gemu binfmt misc emulation,
so we have to determine our parent the evil and less
reliable way...
if grep -gP -- '-nm\x00' /proc/$PPID/cmdline; then
WRAPPED=true
fi
fi

Linaro

If we're being called by gcc-nm or llvm-nm, we're
already wrapped...
if ! SWRAPPED; then

for i in "$@"; do

[""echo $1 |cut -bl'" = "-"] && continue
if echo $i |grep -gE '\.(ola)$' && [-e $i]; then
if LANG=C gcc-nm $i 2>&1 |grep -gq "File format not recognized";
then
which llvm-nm &>/dev/null && REAL NM=llvm-nm
break
fi
fi
done
if ["SREAL NM" = "binutils-nm"] && which gcc-nm &>/dev/null; then
REAL NM=gcc-nm
fi
fi

exec SREAL NM "s@"

Linaro

| OpenMandriva switched to clang as
% its primary compiler last year.
@ OpenMandriva 3 (soon to be
™ released) is almost fully built with
| clang 3.7.

Linaro
.

gcc

The transition was unproblematic,
P most packages that failed failed due
<5 P to bad code or use of nonstandard

Y gcc extensions.

PSS Ve force some packages to build with
P CC=gcc CXX=g++.

Linaro
r

We still need to build gcc even if we
=% don’t want to use it as a compiler

4 ,' though: We need libgcc, libgcc_s,

| libatomic and friends (and potentially
- libstdc++)

Linaro
.

gcc

clang’s GNUC__ macro definitions are too

conservative, claiming to be gcc 4.2.1, causing

- code that checks _ GNUC __ to leave out
optimizations.

: Patching it to say 4.9 produces better code.

(real fix is to check for features instead of
compiler versions)

Linaro
r

Things to avoid for compatibility

Nested functions

Variable length arrays in structs
Variable length arrays of non-POD types
Empty structs

Array subscripts of type “char” (value
[*071=0;)

e Reserved words (* Nullable” defined by
both clang and Qt)

Linaro
r

Things to avoid for compatibility

® Undefined internal functions and variables --
even if they aren’t used:

static void a{() ;
vold b () {
1t (0)

a();
’ Linaro

Things to avoid for compatibility

® gcc 5.x’s changed libstdc++ ABI

https://llvm.org/bugs/show bug.cqi?id=23529

o clang doesn’t implement gcc'’s
__attribute ((abi_tag)), needed by gcc
5.x’s libstdc++ built in new ABI mode

o build gccC With ——with-default-1ibstdcsxsx-

abi=gcc4-compatible

for Nnow .iLinaro

https://llvm.org/bugs/show_bug.cgi?id=23529
https://llvm.org/bugs/show_bug.cgi?id=23529

Things to avoid for compatibility

® (C89-isms and C++98-isms, e.g. changed
meaning of “extern inline’

Linaro

Interesting bugs found by clang

vold something (char n[30]) {

1f (!memcmp (buffer, n, sizeof(n))) {

Linaro

Interesting bugs found by clang

vold something (char n[30]) {

if (!memcmp (buffer, n,) {

size of a pointer - not quite 30

Linaro

Interesting bugs found by clang

unsigned char al[X];
for (1nt 1=0; 1<X; 1++)
b = a ? tagCpet++ : tagSce+t++;

Linaro

Interesting bugs found by clang

unsigned char al[X];
for (int 1=0; 1<X; 1++)
b =tange++ : tagScet++;

always true -- address of an array. This
should have been a][i]

Linaro

glibc

musl is at a point where using it as
¥ the sole system libc is viable (if you
don’t care about binary Compatibility

Linaro
r

Linaro

https://abf.io/openmandriva/llvm
https://abf.io/openmandriva/llvm

libstdc++

LLVM's libc++ is ready to replace
% libstdc++ where binary compatibility is
not a concern.

Linaro

libstdc++

| Unfortunately, binary compatibility is a
’ 4;,.4:? ¥ concern for many uses -- and while
Iibstdc++ and libc++ can coexist,
problems start showing up with other
© libraries (Qt linked to libc++, binary-
only application uses Qt and links to

PN |ibstdc++ — crash) §
_ '._Ilnaro

L f support.

8 switching to libc++ (from STLport)

Linaro
r_

¥ crosscompiling - a regular clang
PL 4 already has crosscompiling support
% built in, no need to build a fresh

73 compiler for every new target

Linaro
r

crosscompiling

--sysroot in clang needs work: Still
¥ sees host system headers.
Wrapper scripts can be used to work

Linaro
r

crosscompiling

Lopts="-LS$SYSROOT/usr/lib -LS$SSYSROOT/lib"

Warnings like "argument unused during compilation"
can break configure scripts

for 1 in "$@"; do

if ["Si" = "-E" -0 "S$i" = "-c¢"]; then
Lopts=""
break
fi
done

exec clang -target S$STARGET \
--sysroot=$SYSROOT -nostdinc \
-isysroot $SYSROOT \
-isystem S$SYSROOT/usr/include \
SLopts \
-ccc-gcc-name $TARGET-gcc "$@"

Linaro

crosscompiling

Automated toolchain and core system
¥ bootstrapping being worked on:

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-

Linaro

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh

Questions? Comments?

Linaro
’IIIII

bero@linaro.org

