
Presented by

Date

Rethinking the core OS in
2015

Bernhard "Bero" Rosenkränzer

Linux Plumbers Conference 2015

Are alternatives to gcc, libstdc++
and glibc viable yet?

The traditional approach

Building a Linux system traditionally
meant starting with building a core
consisting of binutils, gcc and glibc
(sometimes uClibc).

This is still a very viable approach,
but now there are other options...

Binutils

Parts of binutils are still needed - in
particular, a linker. (The traditional
BFD ld can be replaced with gold,
also part of binutils).

lld and mclinker are making some
progress, but not quite there yet.

Binutils

gas is frequently needed because
clang’s integrated as doesn’t support
legacy constructs in common use (e.
g. pre-unified syntax on ARM)

Binutils

Tools like nm need to get more
complex: They should now deal with
3 types of input:
● regular object files
● LLVM bytecode (clang -flto)
● gcc interim code (gcc -flto)

#!/bin/sh
REAL_NM=binutils-nm
PARENT="`readlink /proc/$PPID/exe`"
WRAPPED=false
If /proc isn't mounted, let's do the least evil thing we can
if [-z "$PARENT"]; then
 WRAPPED=true
elif echo $PARENT |grep -qE -- '-nm$'; then
 # If we're being called by gcc-nm or llvm-nm, we're already
 # wrapped (and need to make sure we don't call ourselves recursively)
 WRAPPED=true
elif echo $PARENT |grep -qE -- 'qemu'; then
 # Fun... We're running inside qemu binfmt_misc emulation,
 # so we have to determine our parent the evil and less
 # reliable way...
 if grep -qP -- '-nm\x00' /proc/$PPID/cmdline; then
 WRAPPED=true
 fi
fi

If we're being called by gcc-nm or llvm-nm, we're
already wrapped...
if ! $WRAPPED; then
 for i in "$@"; do
 ["`echo $i |cut -b1`" = "-"] && continue
 if echo $i |grep -qE '\.(o|a)$' && [-e $i]; then
 if LANG=C gcc-nm $i 2>&1 |grep -q "File format not recognized";
then
 which llvm-nm &>/dev/null && REAL_NM=llvm-nm
 break
 fi
 fi
 done
 if ["$REAL_NM" = "binutils-nm"] && which gcc-nm &>/dev/null; then
 REAL_NM=gcc-nm
 fi
fi
exec $REAL_NM "$@"

gcc

gcc can, for the most part, be
replaced with clang these days.

OpenMandriva switched to clang as
its primary compiler last year.
OpenMandriva 3 (soon to be
released) is almost fully built with
clang 3.7.

gcc

The transition was unproblematic,
most packages that failed failed due
to bad code or use of nonstandard
gcc extensions.

We force some packages to build with
CC=gcc CXX=g++.

gcc

We still need to build gcc even if we
don’t want to use it as a compiler
though: We need libgcc, libgcc_s,
libatomic and friends (and potentially
libstdc++)

gcc

clang’s __GNUC__ macro definitions are too
conservative, claiming to be gcc 4.2.1, causing
code that checks __GNUC__ to leave out
optimizations.

Patching it to say 4.9 produces better code.
(real fix is to check for features instead of
compiler versions)

Things to avoid for compatibility

● Nested functions
● Variable length arrays in structs
● Variable length arrays of non-POD types
● Empty structs
● Array subscripts of type “char” (value

[‘0’]=0;)
● Reserved words (“_Nullable” defined by

both clang and Qt)

Things to avoid for compatibility

● Undefined internal functions and variables --
even if they aren’t used:

static void a();

void b() {

 if (0)

 a();

}

Things to avoid for compatibility

● gcc 5.x’s changed libstdc++ ABI
https://llvm.org/bugs/show_bug.cgi?id=23529

○ clang doesn’t implement gcc’s
__attribute__((abi_tag)), needed by gcc
5.x’s libstdc++ built in new ABI mode

○ build gcc with --with-default-libstdcxx-
abi=gcc4-compatible

for now

https://llvm.org/bugs/show_bug.cgi?id=23529
https://llvm.org/bugs/show_bug.cgi?id=23529

Things to avoid for compatibility

● C89-isms and C++98-isms, e.g. changed
meaning of “extern inline”

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}

Interesting bugs found by clang

void something(char n[30]) {

 if(!memcmp(buffer, n, sizeof(n))) {

 …

 }

}
size of a pointer - not quite 30

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

Interesting bugs found by clang

unsigned char a[X];
for(int i=0; i<X; i++)

b = a ? tagCpe++ : tagSce++;

always true -- address of an array. This
should have been a[i]

glibc

musl is at a point where using it as
the sole system libc is viable (if you
don’t care about binary compatibility
with other distributions).

glibc

clang currently doesn’t support musl,
but that’s fixable:
https://abf.io/openmandriva/llvm

https://abf.io/openmandriva/llvm
https://abf.io/openmandriva/llvm

libstdc++

LLVM’s libc++ is ready to replace
libstdc++ where binary compatibility is
not a concern.

libstdc++

Unfortunately, binary compatibility is a
concern for many uses -- and while
libstdc++ and libc++ can coexist,
problems start showing up with other
libraries (Qt linked to libc++, binary-
only application uses Qt and links to
libstdc++ → crash)

libstdc++

libc++ is the better choice if binary
compatibility is not a concern --
roughly 50% space saved, full C++14
support.

Android is doing the right thing by
switching to libc++ (from STLport)

crosscompiling

Switching to an LLVM/clang based
toolchain is interesting for
crosscompiling - a regular clang
already has crosscompiling support
built in, no need to build a fresh
compiler for every new target

crosscompiling

--sysroot in clang needs work: Still
sees host system headers.
Wrapper scripts can be used to work
around this.

crosscompiling
Lopts="-L$SYSROOT/usr/lib -L$SYSROOT/lib"
Warnings like "argument unused during compilation"
can break configure scripts
for i in "$@"; do
 if ["$i" = "-E" -o "$i" = "-c"]; then
 Lopts=""
 break
 fi
done
exec clang -target $TARGET \
 --sysroot=$SYSROOT -nostdinc \
 -isysroot $SYSROOT \
 -isystem $SYSROOT/usr/include \
 $Lopts \
 -ccc-gcc-name $TARGET-gcc "$@"

crosscompiling

Automated toolchain and core system
bootstrapping being worked on:
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-
musl.sh

https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh
https://abf.io/openmandriva/crossbuild/blob/master/build-clang-musl.sh

Questions? Comments?

bero@linaro.org

